Math 102

Krishanu Sankar

November 20, 2018

Announcements

This week's Wednesday office hour is 11:30-1PM (1 hour earlier than normal)

Goals Today

Logistic Equation - review

- Law of Mass Action
- Spread of Disease
- Periodic and Trig functions
 - Sine and Cosine
 - Graphical interpretation
 - Derivatives
 - Period/Frequency, Amplitude, Phase

I = # of infected individuals S = # of susceptible individuals

I = # of infected individuals S = # of susceptible individuals Infection: $s + i \rightarrow i + i$ Recovery: $i \rightarrow s$

- I = # of infected individuals S = # of susceptible individuals Infection: $s + i \rightarrow i + i$ Recovery: $i \rightarrow s$
 - The rate of infection is proportional to $S \cdot I$.
- The rate of recovery is proportional to I.

$$\frac{dI}{dt} = \text{infection} - \text{recovery}$$
$$= \beta SI - \mu I$$

$$\frac{dI}{dt} = \text{infection} - \text{recovery}$$
$$= \beta SI - \mu I$$

Question: Let N = S + I be the total population, and assume that N remains constant. Then what is an expression for $\frac{dS}{dt}$?

$$\frac{dI}{dt} = \text{infection} - \text{recovery}$$
$$= \beta SI - \mu I$$

Question: Let N = S + I be the total population, and assume that N remains constant. Then what is an expression for $\frac{dS}{dt}$?

$$\frac{dS}{dt} = -\beta SI + \mu I$$

 $\frac{dI}{dt} = \beta SI - \mu I$

$$\frac{dI}{dt} = \beta SI - \mu I$$
$$= \beta (N - I)I - \mu I$$

$$\frac{dI}{dt} = \beta SI - \mu I$$
$$= \beta (N - I)I - \mu I$$
$$= -\beta I^2 + (\beta N - \mu)I$$

$$\frac{dI}{dt} = \beta SI - \mu I$$
$$= \beta (N - I)I - \mu I$$
$$= -\beta I^{2} + (\beta N - \mu)I$$
$$= \beta I \left(-I + N - \frac{\mu}{\beta} \right)$$

$$\frac{dI}{dt} = \beta SI - \mu I$$
$$= \beta (N - I)I - \mu I$$
$$= -\beta I^{2} + (\beta N - \mu)I$$
$$= \beta I \left(-I + N - \frac{\mu}{\beta}\right)$$

This is the **logistic equation** with steady states at I = 0 and $I = N - \frac{\mu}{\beta}$.

$$\frac{d\mathbf{I}}{dt} = \beta \mathbf{I} \left(-\mathbf{I} + N - \frac{\mu}{\beta} \right)$$

• Question: If $N - \frac{\mu}{\beta} > 0$, then what happens to Iover time? $I \rightarrow N - \frac{\mu}{\beta}$. The disease becomes endemic.

• Question: If $N - \frac{\mu}{\beta} < 0$, then what happens to Iover time? $I \rightarrow 0$. The disease disappears. Define $R_0 = N\beta/\mu$. R_0 is the # of people one person is likely to infect.

►
$$R_0 > 1 \implies N - \frac{\mu}{\beta} > 0 \implies$$
 endemic.
► $R_0 < 1 \implies N - \frac{\mu}{\beta} < 0 \implies$ disease disappears.

Define $R_0 = N\beta/\mu$. R_0 is the # of people one person is likely to infect.

•
$$R_0 > 1 \implies N - \frac{\mu}{\beta} > 0 \implies$$
 endemic
• $R_0 < 1 \implies N - \frac{\mu}{\beta} < 0 \implies$ disease disappears.

$$\frac{dI}{dt} = \beta SI - \mu I$$

Question: A disease with a large value of β . Give an interpretation of what this means.

Question: A disease with a small value of μ . Give an interpretation of what this means.

Define $R_0 = N\beta/\mu$. R_0 is the # of people one person is likely to infect.

*R*₀ > 1 ⇒ *N* −
$$\frac{\mu}{\beta}$$
 > 0 ⇒ endemic.
 *R*₀ < 1 ⇒ *N* − $\frac{\mu}{\beta}$ < 0 ⇒ disease disappears.

$$\frac{dI}{dt} = \beta SI - \mu I$$

Question: A disease with a large value of β . Give an interpretation of what this means. Highly infectious. Question: A disease with a small value of μ . Give an interpretation of what this means. Slow recovery rate, long incubation period.

Sine and Cosine - Right-Angled Triangles

Sine and Cosine - Unit Circle

Consider a point that is a distance of θ along the circumference of the circle of radius 1 centered at (0,0). (starting at (1,0), going counterclockwise)

 $\sin(\theta) = y - \text{coordinate}$

 $\cos(\theta) = x - \text{coordinate}$

Sine and Cosine - Unit Circle

Remember, the entire circumference of a circle of radius r has length $2\pi r$.

Degrees	Radians
360°	2π
180°	π
120°	$2\pi/3$
90°	$\pi/2$
60°	$\pi/3$
$\approx 57^{\circ}$	1
:	:

Tangent and Secant

Question:

- $\cos(0) =$ $\sin(0) =$ $\cos(\pi) =$ $\sin(\pi) =$ $\cos(\pi/2) =$ $\sin(3\pi/2) =$ $\cos(5\pi/2) =$
- $\sin(-\pi/2) =$

Question:

Sine and Cosine - Graphed

 $\sin(t)$ and $\cos(t)$ are **periodic functions**. They have period 2π .

 $cos(t) = sin(t + \frac{\pi}{2})$ cos(t) = (sin(t))' - sin(t) = (cos(t))'

 $\cos(t) = (\sin(t))'$ and $-\sin(t) = (\cos(t))'$

Draw the velocity vector of the point moving around the circle.

$$velocity_x = -\sin(t)$$

velocity_y =
$$\cos(t)$$

The Circle of Sine

https: //www.youtube.com/watch?v=GibiNy4d4gc

Periodic Functions

A function f(t) is called **periodic** with period P if it satisfies the property

$$f(t+P) = f(t)$$

- Molecular vibrations: $P \approx 10^{-14}$ seconds
- Heartbeat: $P \approx 1$ second
- Sunrise/sunset: P = 1 day
- Seasons: P = 1 year
- Precession of Earth's axis: $P \approx 22,000$ years

Amplitude

 $y = \sin(x)$ $y = A\sin(x)$

The **amplitude** A of a sinusoidal function is half of the difference between the maximum and minimum values.

 $y = A\sin(x)$ $y = A\sin(\omega x)$

The **frequency** ω of a sinusoidal function is 2π divided by the period.

 $y = A\sin(\omega x)$ $y = A\sin(\omega(x - \phi))$

One can introduce a **phase**, which corresponds to a horizontal shift.

 $y = A\sin(\omega(x - \phi))$ $y = A\sin(\omega(x - \phi)) + B$

A sinusoidal function is a function of the form $y = A\sin(\omega(x - \phi)) + B$.

Example: Pendulum

https://phet.colorado.edu/sims/html/ pendulum-lab/latest/pendulum-lab_en.html

Consider a simple pendulum. The period is given by

$$T = 2\pi \sqrt{L/g}$$

where L is the length, and $g = 9.8 m/s^2$.

Example: Pendulum

https://phet.colorado.edu/sims/html/
pendulum-lab/latest/pendulum-lab_en.html

Consider a simple pendulum. The period is given by

$$T = 2\pi \sqrt{L/g}$$

where L is the length, and $g = 9.8 \ m/s^2$.

Question: Let x(t) denote the horizontal position of the pendulum mass.

$$x(t) = A\sin(\omega(t-\phi))$$

If we double the length of the pendulum, what changes?

Example: Pendulum

https://phet.colorado.edu/sims/html/ pendulum-lab/latest/pendulum-lab_en.html

Consider a simple pendulum. The period is given by

$$T = 2\pi \sqrt{L/g}$$

where L is the length, and $g = 9.8 m/s^2$.

Question: Let x(t) denote the horizontal position of the pendulum mass.

$$x(t) = A\sin(\omega(t-\phi))$$

If we double the length of the pendulum, what changes? $A \rightarrow 2A$, and $\omega \rightarrow \frac{\omega}{\sqrt{2}}$.