Math 102

Krishanu Sankar

November 20, 2018

Announcements

- This week's Wednesday office hour is 11:30-1PM (1 hour earlier than normal)

Goals Today

- Logistic Equation - review
- Law of Mass Action
- Spread of Disease
- Periodic and Trig functions
- Sine and Cosine
- Graphical interpretation
- Derivatives
- Period/Frequency, Amplitude, Phase

Spread of Disease

$I=\#$ of infected individuals
$S=\#$ of susceptible individuals

Spread of Disease

$I=\#$ of infected individuals
$S=\#$ of susceptible individuals
Infection: $s+i \rightarrow i+i$
Recovery: $i \rightarrow s$

Spread of Disease

$I=\#$ of infected individuals
$S=\#$ of susceptible individuals
Infection: $s+i \rightarrow i+i$
Recovery: $i \rightarrow s$
The rate of infection is proportional to $S \cdot I$.
The rate of recovery is proportional to I.

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\text { infection }- \text { recovery } \\
& =\beta S I-\mu I
\end{aligned}
$$

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\text { infection }- \text { recovery } \\
& =\beta S I-\mu I
\end{aligned}
$$

Question: Let $N=S+I$ be the total population, and assume that N remains constant. Then what is an expression for $\frac{d S}{d t}$?

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\text { infection }- \text { recovery } \\
& =\beta S I-\mu I
\end{aligned}
$$

Question: Let $N=S+I$ be the total population, and assume that N remains constant. Then what is an expression for $\frac{d S}{d t}$?

$$
\frac{d S}{d t}=-\beta S I+\mu I
$$

Spread of Disease

$$
\frac{d I}{d t}=\beta S I-\mu I
$$

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\beta S I-\mu I \\
& =\beta(N-I) I-\mu I
\end{aligned}
$$

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\beta S I-\mu I \\
& =\beta(N-I) I-\mu I \\
& =-\beta I^{2}+(\beta N-\mu) I
\end{aligned}
$$

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\beta S I-\mu I \\
& =\beta(N-I) I-\mu I \\
& =-\beta I^{2}+(\beta N-\mu) I \\
& =\beta I\left(-I+N-\frac{\mu}{\beta}\right)
\end{aligned}
$$

Spread of Disease

$$
\begin{aligned}
\frac{d I}{d t} & =\beta S I-\mu I \\
& =\beta(N-I) I-\mu I \\
& =-\beta I^{2}+(\beta N-\mu) I \\
& =\beta I\left(-I+N-\frac{\mu}{\beta}\right)
\end{aligned}
$$

This is the logistic equation with steady states at $I=0$ and $I=N-\frac{\mu}{\beta}$.

$$
\frac{d I}{d t}=\beta I\left(-I+N-\frac{\mu}{\beta}\right)
$$

 then what happens to I over time?
dl/dt

- Question:If $N-\frac{\mu}{\beta}<0$, then what happens to I over time?

$$
\frac{d I}{d t}=\beta I\left(-I+N-\frac{\mu}{\beta}\right)
$$

$\mathrm{dl} / \mathrm{dt}$

- Question:If $N-\frac{\mu}{\beta}>0$, then what happens to I over time? $I \rightarrow N-\frac{\mu}{\beta}$. The disease becomes endemic.
- Question:If $N-\frac{\mu}{\beta}<0$, then what happens to I over time? $I \rightarrow 0$. The disease disappears.

Define $R_{0}=N \beta / \mu . R_{0}$ is the $\#$ of people one person is likely to infect.

- $R_{0}>1 \Longrightarrow N-\frac{\mu}{\beta}>0 \Longrightarrow$ endemic.
- $R_{0}<1 \Longrightarrow N-\frac{\mu}{\beta}<0 \Longrightarrow$ disease disappears.

Define $R_{0}=N \beta / \mu . R_{0}$ is the \# of people one person is likely to infect.

- $R_{0}>1 \Longrightarrow N-\frac{\mu}{\beta}>0 \Longrightarrow$ endemic.
$-R_{0}<1 \Longrightarrow N-\frac{\mu}{\beta}<0 \Longrightarrow$ disease disappears.

$$
\frac{d I}{d t}=\beta S I-\mu I
$$

Question: A disease with a large value of β. Give an interpretation of what this means.
Question: A disease with a small value of μ. Give an interpretation of what this means.

Define $R_{0}=N \beta / \mu$. R_{0} is the \# of people one person is likely to infect.

- $R_{0}>1 \Longrightarrow N-\frac{\mu}{\beta}>0 \Longrightarrow$ endemic.
- $R_{0}<1 \Longrightarrow N-\frac{\mu}{\beta}<0 \Longrightarrow$ disease disappears.

$$
\frac{d I}{d t}=\beta S I-\mu I
$$

Question: A disease with a large value of β. Give an interpretation of what this means. Highly infectious. Question: A disease with a small value of μ. Give an interpretation of what this means. Slow recovery rate, long incubation period.

Sine and Cosine - Right-Angled Triangles

Sine and Cosine - Unit Circle

Consider a point that is a distance of θ along the circumference of the circle of radius 1 centered at $(0,0)$. (starting at $(1,0)$, going counterclockwise)
$\sin (\theta)=y-$ coordinate
$\cos (\theta)=x$ - coordinate

Sine and Cosine - Unit Circle

Remember, the entire circumference of a circle of radius r has length $2 \pi r$.

Degrees	Radians
360°	2π
180°	π
120°	$2 \pi / 3$
90°	$\pi / 2$
60°	$\pi / 3$
$\approx 57^{\circ}$	1
\vdots	\vdots

Tangent and Secant

$$
\begin{aligned}
& \tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)} \\
& \sec (\theta)=\frac{1}{\cos (\theta)}
\end{aligned}
$$

(Every trigonometric function is built out of $\sin (\theta)$ and $\cos (\theta)$.)

Question:

$$
\begin{gathered}
\cos (0)= \\
\sin (0)= \\
\cos (\pi)= \\
\sin (\pi)= \\
\cos (\pi / 2)= \\
\sin (3 \pi / 2)= \\
\cos (5 \pi / 2)= \\
\sin (-\pi / 2)=
\end{gathered}
$$

Question:

$$
\begin{gathered}
\cos (0)=1 \\
\sin (0)=0 \\
\cos (\pi)=-1 \\
\sin (\pi)=0 \\
\cos (\pi / 2)=0 \\
\sin (3 \pi / 2)=-1 \\
\cos (5 \pi / 2)=0 \\
\sin (-\pi / 2)=-1
\end{gathered}
$$

Sine and Cosine - Graphed

$\sin (t)$ and $\cos (t)$ are periodic functions. They have period 2π.
(

You might also notice that $\cos (t)=\sin \left(t+\frac{\pi}{2}\right)$!

- $\cos (t)=\sin \left(t+\frac{\pi}{2}\right)$
- $\cos (t)=(\sin (t))^{\prime}$

$$
-\sin (t)=(\cos (t))^{\prime}
$$

$\cos (t)=(\sin (t))^{\prime}$ and $-\sin (t)=(\cos (t))^{\prime}$

The Circle of Sine

https:
//www . youtube. com/watch?v=GibiNy4d4gc

Periodic Functions

A function $f(t)$ is called periodic with period P if it satisfies the property

$$
f(t+P)=f(t)
$$

- Molecular vibrations: $P \approx 10^{-14}$ seconds
- Heartbeat: $P \approx 1$ second
- Sunrise/sunset: $P=1$ day
- Seasons: $P=1$ year
- Precession of Earth's axis: $P \approx 22,000$ years

Amplitude

The amplitude A of a sinusoidal function is half of the difference between the maximum and minimum values.

$$
y=A \sin (x) \quad y=A \sin (\omega x)
$$

The frequency ω of a sinusoidal function is 2π divided by the period.

$$
y=A \sin (\omega x)
$$

$$
y=A \sin (\omega(x-\phi))
$$

One can introduce a phase, which corresponds to a horizontal shift.

$y=A \sin (\omega(x-\phi)) \quad y=A \sin (\omega(x-\phi))+B$
A sinusoidal function is a function of the form $y=A \sin (\omega(x-\phi))+B$.

Example: Pendulum

https://phet.colorado.edu/sims/html/
pendulum-lab/latest/pendulum-lab_en.html
Consider a simple pendulum. The period is given by

$$
T=2 \pi \sqrt{L / g}
$$

where L is the length, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Example: Pendulum

https://phet.colorado.edu/sims/html/
pendulum-lab/latest/pendulum-lab_en.html
Consider a simple pendulum. The period is given by

$$
T=2 \pi \sqrt{L / g}
$$

where L is the length, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Question: Let $x(t)$ denote the horizontal position of the pendulum mass.

$$
x(t)=A \sin (\omega(t-\phi))
$$

If we double the length of the pendulum, what changes?

Example: Pendulum

https://phet.colorado.edu/sims/html/
pendulum-lab/latest/pendulum-lab_en.html
Consider a simple pendulum. The period is given by

$$
T=2 \pi \sqrt{L / g}
$$

where L is the length, and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Question: Let $x(t)$ denote the horizontal position of the pendulum mass.

$$
x(t)=A \sin (\omega(t-\phi))
$$

If we double the length of the pendulum, what changes? $A \rightarrow 2 A$, and $\omega \rightarrow \frac{\omega}{\sqrt{2}}$.

